

OCR Computer Science A Level

1.2.4 Types of Programming Language
Advanced Notes

www.pmt.education

Specification:

1.2.4 a)

● Programming paradigms
○ Need for these paradigms
○ Characteristics of these paradigms

1.2.4 b)
● Procedural languages

1.2.4 c)

● Assembly language
○ Following LMC programs
○ Writing LMC programs

1.2.4 d)
● Modes of addressing memory

○ Intermediate, Direct, Indirect, Indexed

1.2.4. e)

● Object-oriented languages
○ Classes
○ Objects
○ Methods
○ Attributes
○ Inheritance
○ Encapsulation
○ Polymorphism

www.pmt.education

Programming Paradigms

Programming paradigms are different ​approaches to using a
programming language to solve a problem ​. They are split into
two broad categories - imperative and declarative - which can
be broken down further into more specific paradigms. The
imperative programming paradigm includes the procedural
and object-oriented paradigms while the declarative
paradigm is split into logic and functional paradigms. The
paradigm used ​depends on the type of problem ​ that needs
solving.

Imperative
Imperative programming paradigms use code that ​clearly specifies the actions to be
performed ​.

Procedural
Procedural programming is one of the most widely-used
paradigms as it can be ​applied to a wide range of problems
and is relatively ​easy to write and interpret ​. This is a type of
imperative programming which uses a ​sequence of
instructions ​ which may be contained within procedures.
These instructions are carried out in a ​step-by-step manner​.

Examples: ​Pascal, Python, Logo

www.pmt.education

Object-Oriented
Object-oriented programming (referred to as OOP) is another popular paradigm as it is
applicable to certain types of problem with lots of reusable components which have similar
characteristics. OOP is built on entities called ​objects formed from classes ​ which have
certain ​attributes and methods​. OOP focuses on making programs that are ​reusable ​ and
easy to update and maintain​.

Examples: ​Python, Delphi, Java

Declarative
Declarative programming focuses on ​stating the desired
result​ rather than the exact series of instructions that need
to be performed to get to the result. It is the role of the
programming language to determine how best to obtain the
result and the details about ​how it is obtained are
abstracted from the user​. This type of programming is
common in expert systems ​and ​artificial intelligence ​.

Functional
Functional programming uses the concept of ​reusing a set
of functions​, which form the core of the program. Programs
are made up of lines of code consisting of​ function calls ​,
often combined within each other. Functional programming
is​ closely linked to mathematics​.

Examples: ​Haskell, C#, Java

Logic
Logic languages are also part of the declarative programming paradigm and use code
which defines a ​set of facts and rules​ based on the problem. ​Queries ​are used to find
answers to problems.

Example: ​Prolog

www.pmt.education

Procedural Language

Procedural programming is used for a wide range of software development as it is very
simple to implement​. However, it is​ not possible to solve all kinds of problems ​with
procedural languages or it ​may be inefficient ​ to do so.

Procedural languages ​use traditional data types ​ such as integers and strings which are
built into the language and also ​provide data structures ​ like dictionaries and arrays.

Structured programming ​ is a popular subsection of procedural programming in which the
control flow ​is ​given by four main programming structures​:

- Sequence
Code is executed ​line-by-line​, from top to bottom.

- Selection
A certain block of code is run ​if a specific condition is met ​, using IF
statements.

- Iteration
A block of code is executed a ​certain number of times ​ or​ while a condition is
met​. Iteration uses FOR, WHILE or REPEAT UNTIL loops.

- Recursion
Functions are ​expressed in terms of themselves​. Functions are executed,
calling themselves, until a certain condition known as a​ base case ​(which
does not call the function) is met.

Therefore procedural programming is suited to problems that can easily be expressed as a
series of instructions using the constructs described above.

Assembly Language

Assembly language is the ​next level up from machine code
and is part of a family of low level languages. This is
converted to machine code using an assembler ​ when it is
executed.

Assembly language ​uses mnemonics ​ rather than binary,
which makes it ​easier to use ​ than direct machine code.
Each mnemonic is ​represented by a numeric code​.
However, the commands that assembly language uses are ​processor-specific ​ as it directly

www.pmt.education

interacts with the CPU’s special purpose registers. This allows for direct interaction with
hardware so is useful in embedded systems.
Typically, each instruction in assembly language is equivalent to almost one line of
machine code.

Below is a list of the mnemonics you need to be aware of and be able to use:

Mnemonic Instruction Function

ADD Add Add the value at the given memory address to the
value in the Accumulator

SUB Subtract Subtract the value at the given memory address
from the value in the Accumulator

STA Store Store the value in the Accumulator at the given
memory address

LDA Load Load the value at the given memory address into the
Accumulator

INP Input Allows the user to input a value which will be held in
the Accumulator

OUT Output Prints the value currently held in the Accumulator

HLT Halt Stops the program at that line, preventing the rest of
the code from executing.

DAT Data Creates a flag with a label at which data is stored.

BRZ Branch if zero Branches to a given address if the value in the
Accumulator is zero. This is a conditional branch.

BRP Branch if positive Branches to a given address if the value in the
Accumulator is positive. This is a conditional branch.

BRA Branch always Branches to a given address no matter the value in
the Accumulator. This is an unconditional branch.

Below is an example of an LMC program which returns the remainder, called the modulus,
when ​num1​ is divided by ​num2​.

INP
STA num1
INP

www.pmt.education

STA num2
LDA num1

 positive STA num1 // branches to the ‘positive’ flag,
SUB num2 subtracting num2 while the result
BRP positive of num1 minus num2 is positive
LDA num1
OUT
HLT

 num1 DAT
 num2 DAT

Modes of Addressing Memory

Machine code instructions are made up of two parts, the ​opcode ​and ​operand​. The opcode
specifies the instruction to be performed​ from the table above. The operand holds a value
which is related to the ​data on which the instruction is to be performed​.

In some cases, the operand may hold the actual value on which the instruction is to be
executed but more often, it holds an address related to where this data is stored.
Addressing modes ​ allow for a much ​greater number of locations for data to be stored ​ as
the size of the operand would otherwise constrain the number of addresses that could be
accessed.

It is the addressing mode that ​specifies how the operand should be interpreted ​. The
addressing mode is part of the opcode ​ and there are four addressing modes you need to
know:

- Immediate Addressing
The operand is the ​actual value ​ upon which the instruction is to be
performed, represented in binary,

- Direct Addressing
The operand ​gives the address which holds the value ​ upon which the
instruction is to be performed. Direct addressing is used in LMC.

- Indirect Addressing
The operand ​gives the address of a register which holds another address,
where the data is located ​.

- Indexed Addressing
An​ index register ​ is used, which stores a certain value. The address of the
operand is determined by ​adding the operand to the index register​. This is
necessary to add an ​offset ​in order to ​access data stored contiguously ​ in
memory such as in ​arrays​.

www.pmt.education

Object Oriented Language

Object-oriented languages are built around the idea of classes. A ​class ​is a​ template for an
object​ and defines the ​state and behaviour of an objec​t. State is given by ​attributes ​which
give an ​object’s properties ​. Behaviour is defined by the ​methods ​associated with a class,
which ​describe the actions it can perform​.
Classes can be used to​ create objects​ by a process called ​instantiation ​. An ​object ​is a
particular instance of a class​, and a class can be used to create multiple objects with the
same set of attributes and methods.
A class is usually associated with an entity. For example, take a class called ​‘Library’​.
It could have attributes ‘​number_of_books​’, ‘​number_of_computers​’ and methods
‘​add_book​’ and ‘​remove_book​’. Similarly, ‘​Book​’ could also be a class.

set_reserved​ and ​set_onloan​ are a
special type of method called Setters. A ​setter
is a method that​ sets the value of a particular
attribute​. In this example, ‘​set_reserved​’
would set the attribute ‘ ​Reserved​’ to ‘​True​’ if
someone was to reserve that book. A ​getter ​is
another special method used in OOP which
retrieves the value of a given attribute​.

The reason getters and setters are used is to make sure​ attributes cannot be directly
accessed and edited​ by users. This property of object-oriented programming is called
encapsulation​. Attributes are ​declared as private ​ so ​can only be altered by public methods​.
Every class must also have a constructor method, which is called ‘ ​new​’. A ​constructor
allows a new object to be created​.

Below is part of the pseudocode for the ‘ ​Book​’ class described above:

class Book:

private reserved
private onLoan
private author
private title
public procedure new(title,author,reserved,onLoan)

title = givenTitle
author= givenAuthor
reserved = givenReserved
onLoan = givenOnLoan

end procedure
public function set_reserved()

www.pmt.education

reserved=True
end function

end class

In order for a new object to be created, the constructor is used to define the characteristics
of the object as shown below:

myBook = new Book(‘Great Expectations’, ‘Charles
Dickens’,’False’,False’)

When a book is reserved, the following code would be used to call the setter function on
the myBook object.

myBook.set_reserved()

Another property of object-oriented programming is ​inheritance​.
A class can inherit from another class and this relationship
between classes is shown using the diagram to the right. The
subclass ​(or derived class)​ ​will ​possess all of the methods and
attributes​ ​of the​ superclass​ (or parent class) and ​ can have its
own additional properties ​. Considering the previous example,
the ‘​Biography​’ class could inherit from ‘​Book​’ and have its
own attributes such as ‘​Subject​’ and a shorter loan duration,
but would still have an author and title, for example. This allows
programmers to ​effectively reuse certain components and
properties while making some changes​.

Inheritance would be expressed as:

class Biography inherits Book

Polymorphism ​is a property of OOP that means ​objects can behave differently depending
on their class ​. This can result in the ​same method producing different outputs ​ depending
on the object involved. There are two categories of polymorphism: overriding and
overloading.

Overriding ​is​ redefining a method ​ within a subclass and altering the code so that it
functions differently ​and ​produces a different output​.
Overloading ​is ​passing in different parameters into a method​. Both of these forms of
polymorphism would produce different results which would depend on the scenario.

Advantages

- OOP allows for a ​high level of reusability​, which makes it useful for projects where
there are multiple components with similar properties. The properties of ​ inheritance
and polymorphism ​ within OOP allow for this.

- Classes can also be ​used across multiple projects​.

www.pmt.education

- Encapsulation ​is a key reason for choosing OOP as it makes the ​code more reliable
by ​protecting attribute​s from being directly accessed. Code for different classes can
also be ​produced independently ​ of others.

- OOP requires ​advance planning​ to determine how the problem will be broken down
into classes and how these will link to each other. A ​thorough design ​ can produce a
higher-quality piece of software with ​fewer vulnerabilities ​.

- The ​modular structure ​ used in OOP ​makes it easy to maintain and update ​.
- There is a high level of ​abstraction ​and it is not necessary for programmers to know

details about how code is implemented. Once classes have been created and
tested, they can be reused as a ​ black box​ which ​saves time and effort​.

Disadvantages

- This is a different style of programming and so​ requires an alternative style of
thinking​. This can be difficult for programmers accustomed to other paradigms to
pick up.

- OOP is​ not suited to all types of problems​. Where few components are reused,
OOP may in fact result in a​ longer, more inefficient program ​.

- Generally ​unsuitable for smaller problems​.

www.pmt.education

